SiReSS – Safety-related reconfiguration of systems-of-systems

Björn Wudka

SiReSS: A Reconfiguration approach and their utilization into Systems of Systems (SoS)

Presentation for Research School v1

Institut für angewandte Forschung Berlin

Agenda

- 1. SiReSS Project and Partners
- 2. Introduction to Systems of Systems (SoS)
- 3. Reconfiguration
- 4. Reconfiguration for SiReSS

SiReSS Project and Partners Introduction

- System of autonomies systems collaborate in group
- Interaction and collaboration to accomplish given tasks
 - Minimization of time and work
 - Maximization of usability

Source: https://de.wikipedia.org/wiki/Platooning

SiReSS Project and Partners Project definition

Definition of the project:

- The project aims to develop an approach to enable the reconfiguration of cooperating systems
- Main focus on safety relevant reconfigurations
- Reconfiguration should be done by every autonomous system in communication of other system members

SiReSS: Project and Partners Partners

- The project is funded by IFAF Berlin (Institute for applied science Berlin) Ο
- Two research institutes : Ο
 - HTW Berlin University of Applied Sciences (Leader)
 - Beuth University of Applied Sciences ٠
- Three industrial partners Ο
 - Expleo (automotive)
 - InSystems (industrial automation)
 - Samoconsult (automotive)

htw.

BEUTH HOCHSCHULE

University of Applied Sciences

FÜR TECHNIK BERLIN

(expleo)

Systems of Systems Introduction

Properties	System	Systems of Systems
Autonomy	Consists of one autonomous System	Consists of a set of autonomous Systems
Belonging	Acting autonomously	Acting as group and get benefit from other members
Connectivity	Built up on design time	Built up dynamically
Emergence	Built up as they are designed	Can not be foreseen in design time

Systems of Systems Application Focus

System of interest = Autonomous mobile hardware units
 System of systems = Group of mobile hardware units

Focus for SiReSS

- System of interest = Computerized controller
 System of systems = Network of controllers
- System of interest = Software service
 System of systems = Service oriented architecture of Software systems

Reconfiguration Introduction

Reconfiguration is the ability to change an already developed and operating System for:

- 1. Adaption of new requirements
- 2. Extending functionality
- 3. Elimination of Errors
- 4. Improvement of quality characteristics

Reconfiguration Introduction C2C reconfiguration

1. Adaptation of new Requirements: Integration of new System Member 2. Extend functionality: Exchange of car 2 radar data and back ultrasonic sensor to reduce air resistance by reducing C2C distance 3. Elimination of Errors: Car 2 can't use camera→ Car 2 use camera data of car 1

4. Improvement of Quality: Connect camera data of car 1 with radar data of car $2 \rightarrow$ adapt distance for secure drive

Reconfiguration Introduction

Divided into Programmed and Ad-hoc reconfiguration:

Programmed Reconfiguration:

Changes that can be predicted at design time.

Example: Rain detection sensor is broken \rightarrow Windscreen wipe automatic is switched to interval mode

Ad-hoc Reconfiguration:

Changes that cannot be predicted at design time

Example: Additional sensors comes available through other System members \rightarrow Sensor data could be used to extend the functionality or to replace failed sensors

Reconfiguration Methods

Tree search system:

- Most common programmed reconfiguration method
- \circ Method divided in:
 - Logical operator tree
 - Goal driven

Graph transformation

• Rule defining through corner points

Reconfiguration Tree search

Reconfiguration Tree search

Reconfiguration Graph transformation

Graph transformation

Consist of left and right hand side definition

- Left hand side define where reconfiguration should be done
- Right hand side define what should be done

The reconfiguration algorithm is directed through corner points

Reconfiguration Goal driven tree search vs. goal driven graph transformation

Reconfiguration for SiReSS Next steps for SiReSS

- o Ad-hoc Reconfiguration
- Reconfiguration with the ability to use the system structure of members of SoS

Reconfiguration for SiReSS Use case automotive

- Reconfiguration of Platooning car system
- Short Range Sensor of single Car is broken
 → platoon system should be reconfigured to increase security:
 - Broken sensor in middle car of platoon:
 - Broken system member collect data from other near members
 - calculates distance based on collected data
 - Broken sensor at first or last member:
 - New positioning of Member in platoon
 - Broken system member collect data from other near members
 - Calculates distance based on collected data

Source: https://de.wikipedia.org/wiki/Platooning

Reconfiguration for SiReSS Use case industrial automation

- Reconfiguration of robot system
 - Sensor of robot is broken \rightarrow other system members help with their sensor data

Institut für angewandte Forschung Berlin