

Rico Meier^{1→2}, Ian M. Slauch¹, Mariana I. Bertoni¹

Characterization of Lamination Progress with Ultrasound

¹School of Electrical, Computer and Energy Engineering, Arizona State University ²School of Engineering: Energy and Information, HTW Berlin - University of Applied Sciences

[rico.meier@htw-berlin.de](mailto:jaegkl@htw-berlin.de)

Jniversity of Applied Sciences

Module Manufacturing

curve @ STC*) and sorted (similar current/power).

series or parallel) to match the module power output.

front glass and a rear cover. Two polymeric foils (encapsulant) provide the adhesion between components.

rear and an aluminum frame is placed around the module.

Delamination is an Important Failure Mode

Tasks of the encapsulation:

- Electrical Isolation
- Mechanical Stability
- Moisture/ $O₂$ Barrier
- Optical Coupling
- UV Filtering

• 80% of modules show delamination $<$ 15 years [1]!

¹M. Köntges, S. Kurtz, C. Packard, U. Jahn, K. A. Berger, and K. Kato, "Performance and reliability of photovoltaic systems: subtask 3.2: Review of failures of photovoltaic modules: IEA PVPS task 13: external final report IEA-PVPS," International Energy Agency, Photovoltaic Power Systems Programme, Sankt Ursen, 2014. https://www.photovoltaik.eu/solarmodule/polymeranalyse-fuer-eva-folie

հեայ

 \cdot :DEfECT

The Lamination Process

The Lamination Process

Lamination "recipe" $f(T, p, t)$:

- Specific to the individual material (about 20 min)
- **1. Pre-heating Step:** Upper and lower chamber are evacuated
	- \rightarrow Air removal to minimize foid formation
	- \rightarrow Softening the encapsulant
- **2. Curing Step:** Heating
	- \rightarrow enhancing adhesion, cross-linking reaction (gel content >80%)
- **3. Cooling Step:** Cool to RT

 \cdot :D E f E C T

Ethylene Vinyl Acetate (EVA) Characteristics

Crosslinking

 \rightarrow Mechanical stability, transparency

Adhesion

 \rightarrow Siloxane Bonding

Characterization Techniques:

Differential Scanning Calorimetry (DSC), Soxhlet Extraction

Characterization Techniques: Peel Test, Single-Cantilever Beam Test

These are destructive methods! → **Not suited for production / field testing**

Ch. Hirschl, L. Neumaier, W. Mühleisen, M. Zauner, G. Oreski, G.C. Eder, S. Seufzer, Ch. Berge, E. Rüland, M. Kraft, In-line determination of the degree of crosslinking of ethylene vinyl acetate in PV modules by Raman spectroscopy, Sol. Energy Mater. Sol. Cells 152 (2016) 10–20.

Laytec X Link®

• Uses indentation analysis to probe EVA from the backside \rightarrow not suited for Glass/Glass-Modules

Ethylene Vinyl Acetate (EVA) Characteristics

Receiver

Crosslinking Adhesion \rightarrow Mechanical stability, transparency \rightarrow Siloxane Bonding **Volume wave transmission method (1) High-frequency Lamb wave method (2) Sender AWG** Sender Glass EVA Leaky Lamb Wave Glass BS **Transient EVA Receiver recorder**

Longitudinal wave transmission (red) through the sample

Leaky Lamb wave transport consisting of longitudinal (red) & transversal (blue) partial waves

Crosslinking – Characterization Procedure

հեայ

Sample Fabrication

Variation of Lamination Profile

https://cores.research.asu.edu/solar-fab/equipment/44-npc-laminator

Conventional Characterization

US-Characterization

Longitudinal wave speed and attenuation

Time $[\mu s]$

 \cdot :DEfECT

htu.

 \cdot DEfECT

- Increase in Eigenfrequency \rightarrow (1) increase in elastic modulus or (2) reduction in thickness
- Increase in high-frequency attenuation \rightarrow change in EVA properties

- Increase in Eigenfrequency \rightarrow (1) increase in elastic modulus or (2) reduction in thickness
- Increase in high-frequency attenuation \rightarrow change in EVA properties

htu.

• Calibration of the model by conventional methods for each specific EVA \rightarrow Once calibrated, methods provide nondestructive addition/alternative

Summary

htw.

Control measurement: Crosslinking in an Oven

- No lamination pressure
- Same sample measured after different curing durations

→ **After initial drop, sound velocity increases with lamination time**

const. thickness

Transmission measurement during Crosslinking Process

Setup modifications:

- thin, high temperature transducer $(1.5 \text{ mm}, \text{up to } 200^{\circ}\text{C})$
- Measurement during crosslinking process

Measurement Results

Time

 \cdot :DEfECT

Transmission measurement during Crosslinking Process \cdot :DEfECT

Results:

- Time
- Elastic constants (sound velocities) are highly temperature dependent
- Changes due to crosslinking are small in comparison (around 16 ns)
- Crosslinking reaction alters ultrasonic signal \rightarrow adds noise (to cross-correlation result)
- Crosslinking reaction first increases than decreases ToF (as reported in literature)
- ToF plateaus after 15 min \rightarrow indicates that crosslinking is completed

Application

- Effects of environment and aging have not been investigated (yet!) \rightarrow Ideal for non-destructive EVA characterization in module production:
	- a) **EVA quality inspection**:
	- previous aging or pre-crosslinking
	- b**) Optimization of lamination process parameter**:
	- crosslinking analysis (optimization of lamination duration)

→ **After automation/process integration: Non-destructive EVA characterization of ALL manufactured modules (instead of sequential destructive testing)**

Next Steps

• **Industrial Prototype**

• Sensor-array for measuring different module locations at once

Next Steps

• **Follow-up project:**

Aging of solar modules in the field \rightarrow ultrasonic sensor for degradation characterization

Goal: to expand the method to evaluate module health

- during field and accelerated aging (temperature, humidity, UV, stress)
- incorporating different encapsulants (EVA, POE) and backsheets

The ultimate goal is a module polymer degradation model based on ultrasonic measurables enabling an estimation of the remaining module's lifetime.

- Volumen- und Lambwellen
	- Schallgeschwindigkeiten(*f*)
	- Dämpfungseigenschaften(*f*)

Next Steps

• **Follow-up project:**

Aging of solar modules in the field \rightarrow ultrasonic sensor for degradation characterization

Goal: to expand the method to evaluate module health

- during field and accelerated aging (temperature, humidity, UV, stress)
- incorporating different encapsulants (EVA, POE) and backsheets

The ultimate goal is a module polymer degradation model based on ultrasonic measurables enabling an estimation of the remaining module's lifetime.

I am healthy! **Investment opportunity!** *Degrading!* **Investment Risk!**

Acoustic Fingerprint

The Solar Module

University of Applied Sciences

www.htw-berlin.de