

Rico Meier^{1→2}, Ian M. Slauch¹, Mariana I. Bertoni¹

Characterization of Lamination Progress with Ultrasound

¹School of Electrical, Computer and Energy Engineering, Arizona State University ²School of Engineering: Energy and Information, HTW Berlin - University of Applied Sciences

rico.meier@htw-berlin.de

University of Applied Sciences

Module Manufacturing

curve @ STC*) and sorted (similar current/power).

Cells are connected (in series or parallel) to match the module power output.

Stringed cells are protected with a front glass and a rear cover. Two polymeric foils (encapsulant) provide the adhesion between components. The junction box is glued at the rear and an aluminum frame is placed around the module.

Delamination is an Important Failure Mode

Tasks of the encapsulation:

- Electrical Isolation
- Mechanical Stability
- Moisture/O₂ Barrier

• UV Filtering

 80% of modules show delamination < 15 years [1]!

¹M. Köntges, S. Kurtz, C. Packard, U. Jahn, K. A. Berger, and K. Kato, "Performance and reliability of photovoltaic systems: subtask 3.2: Review of failures of photovoltaic modules: IEA PVPS task 13: external final report IEA-PVPS," International Energy Agency, Photovoltaic Power Systems Programme, Sankt Ursen, 2014. https://www.photovoltaik.eu/solarmodule/polymeranalyse-fuer-eva-folie

htu

::DE<u>f</u>ECT

The Lamination Process

The Lamination Process

Lamination "recipe" f(T, p, t):

- Specific to the individual material (about 20 min)
- 1. Pre-heating Step: Upper and lower chamber are evacuated
 - \rightarrow Air removal to minimize foid formation
 - \rightarrow Softening the encapsulant
- 2. Curing Step: Heating
 - \rightarrow enhancing adhesion, cross-linking reaction (gel content >80%)
- 3. Cooling Step: Cool to RT

::DE<u>f</u>ECT

Ethylene Vinyl Acetate (EVA) Characteristics

Crosslinking

 \rightarrow Mechanical stability, transparency

Adhesion

 \rightarrow Siloxane Bonding

Characterization Techniques:

Differential Scanning Calorimetry (DSC), Soxhlet Extraction **Characterization Techniques:** Peel Test, Single-Cantilever Beam Test

These are destructive methods! → Not suited for production / field testing

Ch. Hirschl, L. Neumaier, W. Mühleisen, M. Zauner, G. Oreski, G.C. Eder, S. Seufzer, Ch. Berge, E. Rüland, M. Kraft, In-line determination of the degree of crosslinking of ethylene vinyl acetate in PV modules by Raman spectroscopy, Sol. Energy Mater. Sol. Cells 152 (2016) 10–20.

Laytec X Link[®]

Uses indentation analysis to probe EVA from the backside
 → not suited for Glass/Glass-Modules

Ethylene Vinyl Acetate (EVA) Characteristics

Crosslinking Adhesion \rightarrow Mechanical stability, transparency \rightarrow Siloxane Bonding Volume wave transmission method (1) High-frequency Lamb wave method (2) Sender AWG Receiver EVA Leaky Lamb Wave BS EVA Transient Receiver recorder Leaky Lamb wave transport consisting of Longitudinal wave transmission (red) through the longitudinal (red) & transversal (blue) partial waves sample

Crosslinking – Characterization Procedure

Sample Fabrication

Variation of Lamination Profile

https://cores.research.asu.edu/solar-fab/equipment/44-npc-laminator

Sample	Vaccum Time [min]	Initial Press [min]	Bl Press	adder ure [kPa]	Final Press [min]	
5 min		1.5			5	
6 min			96		6	
10 min	4.5				10	
15 min					15	
18 min					18	
50 min					50	
Gla		Gla	SS 3.2mm glass			
	•	EVA		400µm EVA		
		BS			250um Backsheet	

Conventional Characterization

US-Characterization

Longitudinal wave speed and attenuation

::DEfECT

htu.

•

:DEfECT

- Increase in Eigenfrequency

 → (1) increase in elastic modulus
 or (2) reduction in thickness
- Increase in high-frequency attenuation
 → change in EVA properties

- Increase in Eigenfrequency

 → (1) increase in elastic modulus
 or (2) reduction in thickness
- Increase in high-frequency attenuation
 → change in EVA properties

htu

 Calibration of the model by conventional methods for each specific EVA
 → Once calibrated, methods provide nondestructive addition/alternative

Summary

հեա

Control measurement: Crosslinking in an Oven

- No lamination pressure
- Same sample measured after different curing durations

\rightarrow After initial drop, sound velocity increases with lamination time

const. thickness

Transmission measurement during Crosslinking Process

Setup modifications:

- thin, high temperature transducer (1.5 mm, up to 200°C)
- Measurement during crosslinking process

Measurement Results

Time

:DEfECT

Transmission measurement during Crosslinking Process

Results:

Time

- Elastic constants (sound velocities) are highly temperature dependent
- Changes due to crosslinking are small in comparison (around 16 ns)
- Crosslinking reaction alters ultrasonic signal \rightarrow adds noise (to cross-correlation result)
- Crosslinking reaction first increases than decreases ToF (as reported in literature)
- ToF plateaus after 15 min \rightarrow indicates that crosslinking is completed

::DE<u>f</u>ECT

Application

Effects of environment and aging have not been investigated (yet!)
 → Ideal for non-destructive EVA characterization in module production:

a) EVA quality inspection:

previous aging or pre-crosslinking

b) Optimization of lamination process parameter:

crosslinking analysis (optimization of lamination duration)

→ After automation/process integration: Non-destructive EVA characterization of ALL manufactured modules (instead of sequential destructive testing)

Next Steps

Industrial Prototype

• Sensor-array for measuring different module locations at once

Next Steps

Follow-up project:

• Aging of solar modules in the field \rightarrow ultrasonic sensor for degradation characterization

Goal: to expand the method to evaluate module health

- during field and accelerated aging (temperature, humidity, UV, stress)
- incorporating different encapsulants (EVA, POE) and backsheets

The ultimate goal is a module polymer degradation model based on ultrasonic measurables enabling an estimation of the remaining module's lifetime.

- Volumen- und Lambwellen
 - Schallgeschwindigkeiten(f)
 - Dämpfungseigenschaften(f)

Next Steps

Follow-up project:

• Aging of solar modules in the field \rightarrow ultrasonic sensor for degradation characterization

Goal: to expand the method to evaluate module health

- during field and accelerated aging (temperature, humidity, UV, stress)
- incorporating different encapsulants (EVA, POE) and backsheets

The ultimate goal is a module polymer degradation model based on ultrasonic measurables enabling an estimation of the remaining module's lifetime.

Degrading! Investment Risk! Investment opportunity!

The Solar Module

University of Applied Sciences

www.htw-berlin.de